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The gap in bilayer graphene �BLG� can directly be controlled by a perpendicular electric field. By tuning the
field through zero at a finite rate in neutral BLG, excited states are produced. Due to screening, the resulting
dynamics is determined by coupled nonlinear Landau-Zener models. The generated defect density agrees with
Kibble-Zurek theory in the presence of subleading logarithmic corrections. After the quench, population in-
version occurs for wave vectors close to the Dirac point. This could, at least, in principle, provide a coherent
source of infrared radiation with tunable spectral properties �frequency and broadening�. Cold atoms with
quadratic band crossing exhibit the same dynamics.
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I. INTRODUCTION

Charge carriers in bilayer graphene �BLG�, which consists
of two atomic layers of crystalline carbon, combine nonrel-
ativistic “Schrödinger” �quadratic dispersion� and relativistic
“Dirac” �chiral symmetry, unusual Berry phase� features.
Due to their peculiar nature, BLG holds the promise of revo-
lutionizing electronics since its band gap is directly control-
lable by a perpendicular electric field over a wide range of
parameters1–5 �up to 250 meV �Ref. 6��, unlike existing semi-
conductor technology. Moreover, unlike monolayer graphene
�MLG�, whose effective model �the Dirac equation� was
thoroughly studied in QED and relativistic quantum mechan-
ics, understanding the low-energy properties of BLG is a
new challenge.

Tuning the gap through zero in BLG in a time-dependent
perpendicular electric field parallels closely to a finite rate
passage through a quantum critical point �QCP�: as the gap
closes, activated behavior and a finite correlation length give
way to metallic response and power-law correlations, as in a
sweep through a QCP. During the latter, defects �excited
states and vortices� are produced according to Kibble-Zurek
theory.7,8 When the relaxation time of the system, which en-
codes how much time it needs to adjust to new thermody-
namic conditions, becomes comparable to the remaining
ramping time to the critical point, the system crosses over
from the adiabatic to the diabatic �impulse� regime. In the
latter regime, its state is effectively frozen so that it cannot
follow the time dependence of the instantaneous ground
states—as a result, excitations are produced.9 Evolution re-
starts only after leaving the diabatic regime, with an initial
state mimicking the frozen one. The theory, general as it is,
finds application in very different contexts in physics, rang-
ing from the early universe cosmological evolution7 through
liquid 3,4He �Refs. 8, 10, and 11� and liquid crystals12,13 to
ultracold gases,14 verified for both thermodynamic and quan-
tum phase transitions.15 The relative case of manipulating the
gap—in particular, in real time—via a spatially uniform ex-
ternal electric field, which can therefore play the role of a
�time-dependent� control parameter, establishes BLG as an

ideal setting for the study of quantum quenches with sudden,
continuous, or any other sweep protocols.16–18 This in turn
leads to the question: what might such states be useful for?

This complex of questions is addressed here. In particular,
we compute the defect �excited state� density after a
slow, nonadiabatic gap-closing passage in BLG via
Kibble-Zurek7,8 theory, taking screening between the layers
into account. The presence of excited states after such a
quench leads to population inversion for wave vectors near
the Dirac point in BLG �see Fig. 1�, evidenced by the dy-
namic conductivity. This could, in principle, provide a coher-
ent source of infrared radiation with tunable spectral proper-
ties �frequency and broadening�, determined below in an
idealized model. This is promising as there are only few
materials that generate light in the infrared with tunable fre-
quency; BLG with its unique properties might represent the
first step toward new lasers for this regime.

FIG. 1. �Color online� Reversing the applied perpendicular elec-
tric field +E� in half-filled BLG �left� at a finite rate 1 /� leads to
excited states in the upper branch in accordance with the Kibble-
Zurek theory of nonequilibrium phase transitions �right�. The mo-
mentum distribution increases from red/bright �0� to blue/dark �1�
in the spectra. Realistic quenching times provide an effective popu-
lation inversion with little effect on the layer charge asymmetry.
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II. HAMILTONIAN, TOPOLOGICAL PROPERTIES

We study the problem in a more general setting of a gen-
eral class of low-energy Hamiltonians, comprising mono-
layer and bilayer graphene, which exhibit quantum critical
behavior, as

H = � � cJ�px − ipy�J

cJ�px + ipy�J − �
� , �1�

where J is a positive integer. The energy spectrum is given
by E��p�= ���2+�2�p� with ��p�=cJ�p�J the gapless spec-
trum, �p�=�px

2+ py
2 with spatial dimension d=2.

The critical exponents can straightforwardly be read off.
The correlation length follows from dimensional analysis:
����cJ / ����1/J, defining �=1 /J. The Hamiltonian contains
the Jth spatial derivative �Jth power of p�, which leads to z
=J. The resulting scaling relation z�=1 is in agreement with
a linearly vanishing gap �. To understand the nature of this
criticality, let us take a closer topological look at Eq. �1� by
evaluating the Berry curvature ��p� for a given J, which is
related to the phase picked up during an adiabatic excursion
in the Brillouin zone as19

�p = �p 	 A�p� �2�

with A�p�=−i	np��p�np
, �np
 is the eigenfunction in the nth
band. For Eq. �1�, we obtain for the z component of the Berry
curvature per valley and spin,

�p
z =

�

2E+�p��d��p�
d�p� �2

=
�J2cJ

2�p�2�J−1�

2
�2 + �2�p��3/2 , �3�

and its integral defines a topological invariant20 as

CJ =
1

2

� d2p�p

z =
J

2
sign��� . �4�

Therefore, the sign change in � corresponds to a change in
the topological properties of Eq. �1�. In addition, the Hall
conductivity also exhibits a step as � passes through zero,
and depends on the very same topological invariant per spin
and valley as

�xy =
e2

h
CJ =

e2

h

J

2
sign��� . �5�

States with different values of CJ can be regarded as belong-
ing to distinct phases, similarly to the �xy plateau phases of
the integer quantum-Hall effect.21 Note, that low-energy
Hamiltonians like Eq. �1� usually occur pairwise �i.e., at the
K and K� points in the Brillouin zone for graphene�. There-
fore, the topological invariants, CJ from different valleys, add
up to integer �not necessarily zero� Chern numbers. A � from
spin-orbit coupling can trigger a nonzero Chern number
while the contribution from different valleys due to a stag-
gered sublattice potential or bias voltage lead to a zero Chern
number, although each valleys can have nontrivial topology
with finite CJ. Spin degeneracy also leads to an additional
factor of 2.

III. QUENCHING THE GAP

We are interested in the quantum quench dynamics when
the gap varies as ��t�=�0t /� �up to logarithmic corrections,
as analyzed below� and t� 
−� ,��. According to Kibble-
Zurek scaling,7,8 the resulting defect �extra electron/hole on
the hole/electron rich layer, respectively, equivalent to ex-
cited states in the upper branch in this case22� density is �
��−d�/�z�+1�, which leads to

� � ��0/��1/J. �6�

The matrix structure of Eq. �1� allows us to connect our
problem to the Landau-Zener �LZ� dynamics23 by analyzing
the solution of

i��t
�t� = H
�t�, 
�− �� = 
−, �7�

where H
�=E�
�, and the quantity of interest is 
���.
Considering finite temperatures amounts to change the initial
condition as a combination of positive and negative energy
states. However, as long as kBT��0, our results hold. The
exact solution for the diabatic transition probability between
final ground and excited states at momentum p for ��p�
��0 gives for the momentum distribution of excited states
in the upper branch �Fig. 1� and the resulting total defect
density

Pp = exp
− 
�2�p��/��0� , �8�

� =
Ac

�2
��2� d2pPp =
Ac��1/J�
4J
�2 � ��0


cJ
2�
�1/J

�9�

per valley, spin, and unit cell, with Ac the unit-cell area. This
agrees with Kibble-Zurek scaling in Eq. �6�. However, the
present approach also provides the explicit numerical prefac-
tor for arbitrary J, similarly to the quantum Ising model.24

Note that the bigger J, the larger �and the more insensitive to
�� the resulting defect density, on account of the larger the
number of low-energy states ��2/J� within an energy window
� around the Dirac point.

Since the number of defects from Eq. �9� progressively
increases with decreasing �, it is important to address its
validity. From Ref. 18, the borderline between a sudden and
slow quench is determined from �d� /dt��2, which yields
��0��. Thus, our results apply in the slow quench regime
when ��0�� while the sudden quench region sets in for
��0��.

IV. PHYSICAL REALIZATION

A. Monolayer graphene

The J=1 case with c1=vF�106 m /s is realized in
MLG,25 where the spinor structure encodes the two sublat-
tices of the honeycomb lattice. The control or even the very
existence of a gap there remains an open issue. Dirac fermi-
ons with linear band crossing can alternatively be realized in
optical lattices,26 where the on-site energies of different sub-
lattices are under control, allowing for the introduction of a
time-dependent mass gap. The quantum-Hall step of Eq. �5�
represents the hallmark of a single Dirac cone.
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B. Bilayer graphene with screening

The J=2 case with c2=1 /2m �m�0.03me� coincides with
the low-energy Hamiltonian of BLG �Ref. 27� for energies
below t� /4, with t��0.3–0.4 eV the interlayer hopping,
and the spinor springs from the two layers. Keeping BLG at
charge neutrality by either isolating it from the rest of the
world in a perpendicular electric field or by using a dual-gate
structure,3–6,28 a continuous change in the gate voltage results
in closing and reopening the gap, as the density imbalance
between the layers is inverted. Additionally, it also changes
the topological properties of the model as in Eq. �5�. How-
ever, screening due to electron interactions becomes relevant
in this case, and the induced gap is related to the external
potential, Uext as2,29

2� = Uext +
e2d�n

2Ac�r�0
, �10�

where �n=�p�n1p−n2p� is the dimensionless density imbal-
ance between the two layers with nip the particle density of
state p on the ith layer. In equilibrium, to a good approxima-
tion, the induced gap is given by1,2

� = �1 + � ln� 4t�

�Uext�
��−1Uext

2
, �11�

and the density imbalance reads

�n = 4�0� ln����/2t�� �12�

with �=e2d�0 /Ac�r�0�0.1–0.5 the dimensionless screening
strength, d�3.3 Å the interlayer distance, �0 the permittiv-
ity of free space, and �0=Acm /2
�2 the density of states per
valley and spin in the limit �→0. For SiO2/air interface,
�r�2.5 ��r=25 for NH3 and �r=80 for H2O�, which reduces
the effects of screening.

V. NUMERICS

In a quench of a time-dependent external potential in
BLG, the induced gap couples the two-level systems 
stem-
ming from the 2	2 structure of Eq. �1�, labeled by p� via
the �n term in Eq. �10�. The problem would require the so-
lution of a continuum of coupled differential equations,
which is not easy, even approximately. We mention that the
case of a single level �only one p mode�, in which case �n
=n1p−n2p in Eq. �10�, is known as the nonlinear LZ model,30

and the resulting dynamics differ qualitatively from the con-
ventional one, possessing nonzero transition probability even
in the adiabatic limit for strong nonlinear coupling.

The analysis is simplified considerably by the observation
that a single level cannot have a strong impact on the dynam-
ics of the others due to the large number of terms in the sum
for �n. Thus, it looks natural to replace the nonlinear term by
an average density imbalance, independent of the explicit
time dependence of n1p�t�−n2p�t� for a given p, hence decou-
pling the LZ Hamiltonians for distinct p’s.

When Uext changes fully adiabatically, the resulting gap
and density imbalance are given by Eqs. �11� and �12�,

respectively. For slow, nearly adiabatic temporal changes in
the potential, only a small fraction of terms in the �n sum is
expected to behave truly diabatically �contribution from
states nearest to the gap edges�. Thus we assume that the gap
is still given by Eq. �11�, and establish self-consistency by
verifying that the resulting density imbalance satisfies Eq.
�12�. Although the usage of Eq. �11� simplifies the picture, it
still differs from the conventional LZ form, i.e., subleading
logarithmic terms are inevitably present albeit with a reason-
ably small prefactor �. Fortunately, one can invoke the ex-
tension of the Kibble-Zurek mechanism for nonlinear
quenches to estimate the resulting defect density16,17 �note
the difference between a nonlinear quench on the LZ
problem16,17 and the nonlinear LZ problem30�. The logarith-
mic terms in Eq. �11� can be considered as “zeroth” powers,
therefore the resulting quench is still “linear,” with sublead-
ing logarithmic corrections.

The inset of Fig. 2 shows the density imbalance, obtained
from solving numerically the LZ problem 
Eq. �7�� with the
adiabatic screening potential 
Eq. �11�� for BLG with a lin-
early varying external potential,

Uext�t� = U0t/�, t � 
− �,�� . �13�

The numerical results are compared to those from Eqs. �11�
and �12�; the imbalance is rather well described by the equi-
librium, fully adiabatic ��→�� expression �dashed-green
line�, therefore our decoupling of the coupled nonlinear LZ
problem by the adiabatic potential for slow enough quenches
with Eq. �11� works satisfactorily. This validates our average
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FIG. 2. �Color online� The density of defects created during the
quench per spin, valley, and unit cell in BLG with screening is
shown for Uext=U0t /�, t�=5U0, �=0 �blue, circle�, 0.1 �red,
square�, 0.2 �black, triangle�, and 0.5 �green, star� from top to bot-
tom. The symbols denote the numerical data and the solid lines are
fits using � /�0�0= C

2 � �

��0
��. The inset shows the time-dependent

density imbalance of BLG per spin and valley in a linear external
potential with strong screening ��=0.5� with ��0 /�=1 �blue�, 10
�red�, and 100 �black� from top to bottom. The green dashed line
shows the fully adiabatic �equilibrium� result with �→�, Eqs. �11�
and �12�, which is approached fast with increasing �. Given the
simplicity of our self-consistent average field procedure, the agree-
ment is excellent for slow quenches.

QUANTUM QUENCH DYNAMICS AND POPULATION… PHYSICAL REVIEW B 82, 125441 �2010�

125441-3



field decoupling procedure. Note that to the density imbal-
ance in Eq. �12� all states up to the cutoff, t�, are contribut-
ing. On the other hand, defect production occurs at very low
energies, close to the touching point of the gapless branches,
whose contribution to the imbalance is negligible in the limit
of the size of the initial gap, Eq. �11�, ���� �Uext=U0

� t�.
The number of defects �excited states in the upper branch�

created in an external potential, Uext�t�=U0t /�, t� 
−� ,��,
follows Eq. �9� even in the presence of screening as

�

�0�0
=

1

2
���

�0
� �

��0
, �14�

where �0= �U0 /2� and ���� �Uext=U0
. Equation �14� together

with Eq. �9� are the central results of our Kibble-Zurek
analysis. The numerical data fitted with � /�0�0=C� �

��0
�� /2,

and both the prefactor C and the exponent � are compared to
the expected values, namely, ��� /�0 for the coefficient and
1/2 for the � exponent for various values of �, summarized in
Table I, and shown in Fig. 2. The agreement is indeed re-
markable, the slight mismatch in the exponent 1/2 being due
to the subleading logarithmic terms in Eq. �11� for stronger
screening. Since �0�0�10−3 for �0� t� /10, the resulting
density of defects per unit area �including spin and valley�
falls into the order of �� /��0	1012 cm−2, and can take the
value 3	109 cm−2 for quenching time ��1 ns, corre-
sponding to a ramping rate �0 /��107 eV /s. Note that this
density corresponds to the electrons/holes in the otherwise
empty/occupied upper/lower branch, and does not by itself
imply any particular real-space density modulation since
these states contribute negligibly to the layer charge imbal-
ance. A moderately slow quench implies ��0 /��10–100
with �0� t� /10, translating to ��0.1–1 ps. Different non-
linear sweep protocols16–18 lead to similar conclusion: the
steeper �more nonadiabatic� the quench, the bigger the defect
density produced.

Our results are robust with respect to variations in the
band structure, e.g., extra hopping terms or large asymmetry
gap. The quadratic spectrum of BLG with J=2 changes to
linear one �J=1� at the vicinity of the Dirac point ��10 K
range� due to trigonal warping, which could affect the scal-
ing of the defect density �1 /��→1 /�� for slow quenches.
Excitonic effects can either renormalize the gap in biased
BLG or open small gaps in unbiased BLG,31 which can be
overcome by the electric field without affecting our findings.

VI. POPULATION INVERSION, DYNAMIC
CONDUCTIVITY

Having established the scaling properties of the defect
density in BLG, we turn to the determination of the optical
response of the excited state resulting from the quench,
whose momentum distribution is given by Eq. �8�; The oc-
cupation number in the upper and lower branches of the
spectrum is, respectively, f+�p�= Pp and f−�p�=1− Pp due to
particle-hole symmetry. For momenta close to the K point,
population inversion occurs when f+�p�� f−�p�, i.e., in the
energy range 2������2��

�1+ �� ln 2� / �
����, which
translates in the near adiabatic limit to

2�� � �� � 2�� +
� ln 2


�
. �15�

The effect of a small ac electric field can be considered using
Fermi’s golden rule, and the initial dynamic conductivity is
related to the rate of optical transitions between the two
states with the same momentum, weighted by the probabili-
ties of occupied initial and empty final states, as

�p��� =
2


�
Mp

2���� − 2���
2 + �2�p��
f−�p� − f+�p�� ,

�16�

where Mp= �vx�p�eA� is the transition matrix element be-
tween the higher and lower energy state, where vx�p�
=
+

� �H /�px
− and A the vector potential. Thence, we ob-
tain the dynamic conductivity

���� = �0�1 − 2 exp� 
�

4���


4��
2 − ����2���

	
����2 + 4��

2

����2 ������ − 2��� �17�

with �0=e2 /2� the ac conductivity of BLG.32,33

Both absorption and stimulated emission are taken into
account, and the negativity of the resulting conductivity in-
dicates the dominance of the latter: this indicates a phase
coherent response, which is of course essential for a laser. In
addition, stimulated emission can also win against spontane-
ous emission by increasing the intensity of the incoming ra-
diation field. If spontaneous emission dominates �lumines-
cence�, the resulting radiation will still be spectrally limited
but without phase coherence.

In the frequency range of Eq. �15�, the dynamic conduc-
tivity is negative due to the population inversion34 �i.e., the
energy injected into the system during the quench is re-
leased� as

���� → 2��� � − 2�0. �18�

The region of negative conductivity shrinks with increasing
�, without influencing the amplitude of ���� precisely at the
gap edge. This follows from Eq. �8�, implying maximal
population inversion at the Dirac point for arbitrary quench
time, i.e., Pp=0=1. For higher frequencies, ���� is still sup-
pressed with respect to the adiabatic optical response.

TABLE I. The numerically obtained values of the coefficient,
��� /�0 and the exponent 1/2 of the defect density from Fig. 2 for
t�=5U0, compared to the values based on Kibble-Zurek scaling and
Eq. �11�.

� 0 0.1 0.2 0.5

��� /�0 from Eq. �11� 1.00 0.88 0.80 0.64
��� /�0 from the fit 1.00 0.87 0.78 0.64

Exponent ��� 0.50 0.52 0.53 0.55
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The typical lasing frequency lies in the close vicinity of
�� �including the terahertz regime, wavelength on the order
of 10 �m�, conveniently tunable by perpendicular electric
fields.6 The relaxation times for intraband and interband pro-
cesses in MLG are estimated as 1 ps and 1–100 ns,34 respec-
tively, which might be further enhanced in BLG around half
filling.35 Thus, the lasing is expected to survive for quench-
ing times in the picosecond-nanosecond range even in the
presence of the above processes. Repeated quenching �such
as optical pumping� between � and −� is also linked to the
Kibble-Zurek theory36 with similar effects on the population
inversion.

The dc conductivity also reveals the effect of the electric
field quench. In the presence of a clean gap, excitations, and
hence the dc conductivity, are exponentially suppressed at
low temperatures. The excited electrons/holes in the upper/
lower branch resulting from this quench, can carry a current
that is not activated.

VII. CONCLUSIONS

To conclude, by exploiting the tunability of the band gap
in BLG by a perpendicular electric field, a finite-rate tempo-
ral electric field quench leads to excited-state production,
whose distribution is analyzed in terms of Kibble-Zurek scal-

ing, LZ dynamics for nonlinear quenches and is compared to
the full numerical solution of the problem with screening
corrections, using an adiabatic decoupling procedure. The
effect of the quench is manifested in population inversion,
and BLG could be used as a coherent source of infrared
radiation, and possibly as a laser.

Our results apply to other systems with a quadratic band
crossing, e.g., for certain nodal superconductors or cold at-
oms on Kagome or checkerboard optical lattices37 at appro-
priate fillings, described by Eq. �1� with J=2 at low energies.
The momentum distribution, Eq. �8� and the concomitant
scaling of the defect density after closing and reopening the
gap would be direct evidence of the quench dynamics. Par-
ticularly intriguingly, graphene multilayers with appropriate
stackings realize higher-order �J�2� band crossings.38,39
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